Supplement #### Supplementary Methods Patients whose samples were used in this study were treated at John's Hopkins University, the University of California San Francisco, or the University of Pennsylvania on a phase II or III trial of quizartinib monotherapy¹⁰⁻¹¹ for patients with relapsed or refractory AML. Analysis was conducted on samples from the time of study entry and at the time of relapse on quizartinib monotherapy. Samples were collected in accordance with the Declaration of Helsinki under institutional review board-approved tissue banking protocols, and written informed consent was obtained from all patients. Patients were selected if they relapsed after initial treatment with quizartinib monotherapy and had serial samples available for analysis. Samples were distinct from those used in our previous quizartinib analysis¹⁸. We performed single cell (SC) DNA sequencing on unsorted mononuclear cells using the Tapestri platform (Mission Bio Inc). This platform's technology utilizes a "two-step" droplet-based microfluidics workflow¹². Cells are first encapsulated and lysed, and then chromatin/protein complexes are digested with proteases. After heat inactivation of the proteases, molecular barcodes and PCR reagents are added via microfluidics to the lysate drops containing single-cell nucleic acids. Droplets are thermocycled and the barcodes are incorporated into amplicons from multiple genomic loci. For this set of patients, targeted sequencing of mutational hotspots included 40 amplicons from 19-AML specific genes plus 10 amplicons to control for allele drop out. The DNA was then incorporated into a library preparation workflow similar to that used for other next generation sequencing applications, including purification and PCR amplification via AmpureXP (Beckman Coulter). DNA was quantified using the Qubit Fluorometer (ThermoFisher) and library size was measured with the high-sensitivity Bioanalyzer 2100 DNA Assay (Agilent Technologies). Libraries were normalized, pooled, and sequenced using 150 pair end reads on a HiSeq4000 (Illumina). To analyze the data, paired-end FASTQ files, generated by the Illumina HiSeq4000, were processed by two different analysis pipelines: the commercially available Tapestri pipeline (Mission Bio Inc.) and a non-commercial variant calling pipeline utilizing GATK best practices workflows 14,21. In both cases, high quality reads were demultiplexed for cell calling using cell-specific barcodes, single cells were filtered based on read depth and distribution, reads were aligned to the reference genome hg19 (BWA), and variants were called using GATK3.7/HaplotypeCaller. Variants selected for downstream analysis were identified by qualitative variant annotation information (e.g., ClinVar) as well as quantitative pathogenicity metrics (e.g., Dann). Candidate pathogenic mutations were manually reviewed via Integrative Genomics Viewer 15 via the non-commercial pipeline. Internal tandem duplications (ITDs) were specifically identified by a custom algorithm (Mission Bio Inc.): if there were more than ten reads with more than four non-reference reads and a ratio of non-reference to reference reads greater than 0.1, the cell was considered to have a non-reference or alternate allele. If the ratio of non-reference to alternative alleles was greater than a preset cutoff (0.9), it was considered to be homozygous. Based on variant call data and determined cell populations, single cell phylogenies and populational hierarchies were reconstructed. Included figures represent one possible evolutionary trajectory based on detectable mutational data. All SCS data is deposited into dbGAP. # **Supplementary Tables and Figures** **Supplementary Table 1**. Additional Patient Clinical Data. | Patient
ID | Age | Sex | Cytogenetics at Study
Entry | Cytogenetics at Relapse if Different Than Baseline | Dose of quizartinib | |---------------|-----|-----|--|--|-----------------------------------| | 1 | 32 | M | 46,XY,del(5)(q23q33)[5]/4
6,XY[4] | 46,XY,del(5)(q23q33)[14]/46,
XY[1] | 135mg | | 2 | 65 | M | 47,XY,+11[15] | 47,XY,+11[13]/47,sl,add(17)(
p11.2)[9] | 135mg | | 3 | 64 | F | 46, XX | | 30mg x 2 months,
60mg 2 weeks | | 4 | 69 | F | 46, XX | | 30mg x 5 weeks,
60mg x 7 weeks | | 5 | 70 | М | unavailable | 46,XY,del(20)(q11.2)[2]/46,
XY[21] | 30mg x 8 weeks,
60mg x 2 weeks | | 6 | 38 | F | 47, XX, +8, t(x;10) | | 30mg | | 7 | 59 | F | 47,XX,+8[1]/47,idem,de
I(16)(q13)[19] | 47,XX,+8,del(16)(q13)[20] | 90mg | | 8 | 45 | F | 47,XX,+8[3] | 47,XX,+8[3]/47,sl,del(11)(q
21q23),t(16;19)(q22;p13.3)[
14]/46,XX[3] | 30mg x 5 weeks,
60mg x 1 week | **Supplementary Table 2**. Variant Allele Frequencies (VAFs) by aggregate bulk sequencing compared to single cell sequencing (SCS)-derived population frequencies. SCS illuminates more complicated clonal architecture and can directly measure zygosity and co-mutations. Patient 1 | | Time
Points | WT | FLT3
ITD #1 | FLT3
ITD #2 | NRAS
G13D | NRAS
Q61R | KIT
D816V | |----------------------|---------------------|-------|----------------|----------------|--------------|--------------|--------------| | VAF % by bulk | Pre-
quizartinib | | 54.10 | 7.58 | 0.08 | 0.04 | 0.17 | | sequencing | Relapse | | 0.62 | 0.26 | 6.11 | 50.10 | 1.41 | | Population frequency | Pre-
quizartinib | 16.65 | 72.78 | 10.20 | 0.11 | 0.05 | 0.23 | | % by SCS | Relapse | 14.45 | 0.89 | 0.38 | 8.83 | 73.41 | 2.04 | Patient 2 | | Time Points | WT | FLT3
D835Y* | FLT3
D835V | FLT3
N841K | KRAS
G13D* | KRAS
G13D
homo-
zygous* | FLT3
D835Y
homo-
zygous* | |-----------------------|--|-------|----------------|---------------|---------------|---------------|----------------------------------|-----------------------------------| | VAF % by | Pre-quizartinib | | 0.00 | 0.00 | 5.60 | 1.00 | | _ | | sequencing | Relapse after quizartinib | | 37.90 | 6.00 | 0.90 | 5.20 | | | | | Relapse after quizartinib + chemotherapy | | 31.10 | 1.00 | 1.80 | 0.60 | | | | Population | Pre-quizartinib | 89.77 | 0.00 | 0.00 | 10.07 | | 0.17 | 0.00 | | frequency %
by SCS | Relapse after quizartinib | 7.82 | 74.22 | 10.34 | 1.05 | | 4.83 | 1.74 | | | Relapse after
quizartinib +
chemotherapy | 27.58 | 60.02 | 0.69 | 9.92 | | 0.20 | 1.59 | ^{*}Bulk sequencing cannot determine zygosity. Patient 3 | | Time
Points | WT | FLT3
ITD #1 | FLT3
ITD #2 | FLT3
D835G* | WT1
R374G* | WT1
R385G* | DNMT3A
R882H | WT1
R374G,
FLT3 ITD
#1* | WT1
R374G,
FLT3 ITD
#2* | FLT3
D835G,
WT1
R374G* | |----------------------|---------------------|-------|----------------|----------------|----------------|---------------|---------------|-----------------|----------------------------------|----------------------------------|---------------------------------| | VAF % by
bulk | Pre-
quizartinib | | 9.10 | 32.00 | 0.00 | 23.00 | 1.35 | 40.80 | | | | | sequencing | Relapse | | 1.00 | 0.00 | 41.70 | 43.40 | 0.90 | 46.10 | | | | | Population frequency | Pre-
quizartinib | 20.52 | 6.93 | 13.56 | | | | 11.19 | 3.17 | 44.63 | 0.00 | | % by SCS | Relapse | 9.94 | 0.00 | 0.00 | | | | 2.18 | 0.00 | 0.00 | 87.88 | ^{*}Bulk sequencing cannot determine co-mutations Patient 4 | | Time Points | WT | FLT3 ITD* | FLT3 D835Y* | FLT3 ITD,
FLT3 D835Y** | FLT3 ITD homo-
zygous* | FLT3 ITD
hetero-
zygous* | |-----------------------|-----------------|-------|-----------|-------------|---------------------------|---------------------------|--------------------------------| | VAF % by bulk | Pre-quizartinib | | 64.00 | 0.00 | | | | | sequencing | Relapse | | 98.00 | 47.00 | | | | | Population | Pre-quizartinib | 26.28 | | | 0.00 | 20.09 | 8.94 | | frequency %
by SCS | Relapse | 0.52 | | | 45.11 | 1.22 | 1.48 | ^{*}Bulk sequencing cannot determine zygosity **Bulk sequencing cannot determine co-mutations. Patient 5 | | Time
Points | WT | FLT3
ITD* | FLT3
D835Y
** | FLT3
D835V
** | FLT3
1836S | DNMT
3A
R882H | FLT3
ITD
hetero-
zygous | FLT3
ITD
homo-
zygous | FLT3
ITD
hetero-
zygous,
D835Y | FLT3
ITD
homo-
zygous
D835Y | FLT3
ITD
homo-
zygous
I836S | FLT3
ITD
hetero-
zygous
D835V | |----------------------|---------------------|------|--------------|---------------------|---------------------|---------------|---------------------|----------------------------------|--------------------------------|--|---|---|---| | VAF % by
bulk | Pre-
quizartinib | | 62.25 | 0.00 | 0.00 | 0.00 | 45.90 | | | | | | | | sequencing | Relapse | | 74.7 | 31.20 | 2.60 | 7.90 | 48.90 | | | | | | | | Population frequency | Pre-
quizartinib | 3.23 | | | | | 0.38 | 18.25 | 10.30 | 0.00 | 0.00 | 0.00 | 0.00 | | % by SCS | Relapse | 0.72 | | | | | 0.28 | 0.98 | 4.25 | 11.34 | 5.88 | 4.87 | 0.74 | ^{*}Bulk sequencing cannot determine zygosity **Bulk sequencing cannot determine co-mutations. Patient 6 | | Time
Points | FLT3
ITD* | FLT3
D835Y*
* | FLT3
D835H** | WT1
S386
stop
** | ASXL1
L815P** | FLT3
ITD
homo-
zygous | FLT3 ITD
hetero-
zygous | FLT3 ITD-
hetero-
zygous,
FLT3
D835H | FLT3
ITD-
homo-
zygous,
WT1
S836* | FLT3
ITD-
homo-
zygous,
WT1
S836*,
D835H | FLT3
ITD-
homo-
zygou
s,
FLT3
D835Y | |----------------------|---------------------|--------------|---------------------|-----------------|---------------------------|------------------|--------------------------------|-------------------------------|--|--|--|---| | VAF % by
bulk | Pre-
quizartinib | 61.80 | 0.00 | 0.00 | 1.80 | 99.70 | | | | | | | | sequencing | Relapse | 84.60 | 2.50 | 11.00 | 7.40 | 99.70 | | | | | | | | Population frequency | Pre-
quizartinib | | | | | 7.20 | 21.54 | 46.82 | 0.0 | 1.10 | 0.00 | 0.00 | | % by SCS | Relapse | | | | | 7.24 | 54.88 | 7.53 | 9.9 | 6.38 | 6.43 | 2.91 | ^{*}Bulk sequencing cannot determine zygosity **Bulk sequencing cannot determine co-mutations. Patient 7: bulk sequencing shows no co-mutations | | Pre-Quizartinib Sample | Relapse Sample | |-----------------|------------------------|----------------| | Variant | VAF% by bul | k sequencing | | FLT3 D835V | 0.00 | 31.00 | | FLT3 D835I | 0.00 | 4.90 | | FLT3 D835F | 0.00 | 3.80 | | FLT3 S838P | 0.00 | 30.00 | | FLT3 ITD #1 | 11.80 | 19.30 | | FLT3 ITD #2 | 10.30 | 9.20 | | DNMT3A
R882H | 46.40 | 48.50 | Patient 7: SCS | | | | | | | Populati | on Freque | ency (%) | | | | | | |-----------------|------|---------------------|------------------------------------|-------------------------------------|-------------------------------------|----------------------------------|---|---------------------------|---------------------------|---|--|--|--| | Time Points | WT | DNMT3
A
R882H | DNMT3A
R882H
, FLT3
D835V | DNMT3A
R882H
, FLT3
ITD #1 | DNMT3A
R882H
, FLT3
ITD #2 | DNMT3A
R882H
, both
ITD | DNMT3
A
R882H,
FLT3
both
ITD,
FLT3
D835V,
FLT3
S838P | DNMT3
A, FLT3
D835F | DNMT3
A, FLT3
D835I | DNMT3
A, FLT3
D835V,
FLT3
S838P | DNMT3
A, FLT3
ITD #1,
FLT3
D835V,
FLT3
S838P | DNMT3
A, FLT3
ITD #2,
FLT3
D835V,
FLT3
S838P | DNMT3
A, FLT3
ITD #1,
FLT3
D835V | | Pre-quizartinib | 9.48 | 57.74 | 0.00 | 10.48 | 6.56 | 15.71 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | | Relapse | 3.32 | 4.22 | 3.83 | 2.22 | 0.45 | 1.16 | 15.29 | 3.90 | 4.15 | 28.91 | 24.79 | 4.19 | 3.57 | ### Patient 8 | | Time
Points | WT | FLT3
ITD | FLT3
D835Y | WT1
385Q | WT1
386V | FLT3 ITD,
D835Y, WT1
385Q, WT1
386V | FLT3 ITD,
D835Y
homo-
zygous,
WT1
385Q,
WT1 386V | FLT3 ITD,
WT1 385Q
WT1 386V | |--------------------------------|----------------|-------|-------------|---------------|-------------|-------------|--|--|-----------------------------------| | VAF % by
bulk
sequencing | Relapse | | 48.8 | 41.2 | 44.9 | 43.7 | | | | | Population frequency % by SCS | Relapse | 10.31 | | | | | 82.37 | 3.75 | 3.29 | Supplementary Table 3. FLT3 Internal Tandem Duplication (ITD) mutations. | Patient ID | ITD
(if >1) | ITD
location | ITD sequence | |------------|----------------|--------------------|---| | 1 | #1 | chr13:286
08278 | TTTCTCTTGGAAACTCCCATTTGAGATCATATTCA
TATTC | | | #2 | chr13:286
08300 | CTTAGATGATTCTCTGAA | | 3 | #1 | chr13:286
08262 | CCAAACTCTAAATTTTCTCTTGGAAACTCCCATTT
GAGATCATATTCATATTCTCT | | | #2 | chr13:286
08305 | CAGTTTCTCTTGG | | 4 | | chr13:286
08297 | CGCCTCAAACTCTAAATTTTC | | 5 | | chr13:286
08624 | TCGGGACTCTAAATTTTCTCTTGGAAACTCCCAT
TTGAGATCATATTCATATTC | | 6 | | chr13:286
08308 | TACCAAACTC | | 7 | #1 | chr13:286
08267 | AGCACCTGATCCTAGTACCTTCCCTGCAAAGACA
AATGGTGAGTACGTGCA | | | #2 | chr13:286
08104 | TGCAGAAACATTTGGCACATTCCATTCTTACCAA
ACTCTAAATTTTCTCTTGGAAACTCCCATTTGAGA
TCATATTCAT | | 8 | | chr13:286
08305 | GATATTCTCTGAA | **Supplementary Figure 1**. Single cell sequencing of relapse sample from patient 8. Patient 8, for which only the relapse sample was able to be sequenced, demonstrates two different off-target mutations in the WT1 gene (in adjacent proteins) and heterozygous as well as homozygous D835Y mutations. The patient relapsed with a predominance of D835Y mutation in a FLT3-ITD⁺ allele. **Supplementary Figure 2**. Integrative Genomics Viewer (IGV) views from patient 7. **A**. Multi-nucleotide variant (MNV) changes to make D835V mutation. **B**. Single nucleotide variant (SNV) change to make D835V mutation. **C**. Population of D835V mutants from (B) with SNV gain a second mutation becoming MNV to make D835F. **D**. Population of D835V mutants from (B) with SNV gain a second mutation becoming an MNV to make D835I. ## A. B. # C. D. Codon: ATC > AAT Reverse complement: GAT > ATT Amino acid: D > I $\mathbf{D8351}$